# NZS4541:2013 Seismic Design

April 2015 Chris Mak



### Introduction

- Christchurch 2010/2011 Events and Wellington 2013 Event
  - Other than large tanks sprinkler systems performed reasonably well
  - One high profile Wellington incident has resulted in greater emphasis on all trades
- Why did Sprinklers perform well
  - Edgecumbe Earthquake -1987
    - Significant upgrade on NZS4541 in 1996
      - Written by a Professional Structural Engineer
  - NZ installation practices
  - Inspection regime?
  - Good luck, not good management?
- All of the above
- NZS4541:2013 has changed seismic design requirements
  - Are installers or designers aware of this?
  - Does it matter?
- This presentation is intended to concentrate on pipework bracing requirements Clause 403.13.2



### Requirements

- Clause 105 Seismic Resistance
  - Remain operation at Ultimate Limit State Earthquake Loading
    - If building still standing, sprinkler system needs to remain operational.
    - Building may not be serviceable (Serviceability Limit State.)
  - Movement or failure of other services cannot impair Sprinkler System
  - Water supply tanks to be designed to same Importance Level as the Building itself.
- Clause 112.2 Completion Documents
  - As-built sprinkler and pipe layout plans with seismic resistance provisions, including whether the design is to 403.12.1(a) or (b)
- Clause 403.12. Seismic Resistance of Pipework
  - Reviewed next slide
- Actions
  - Aon to issue a Technical Note on requirements of clause 112.2 May 2015.
  - Aon to review Technical Note 09-04 (Seismic Design of Water Supply Tanks) May/June 2015
    - Are your tank suppliers up to date with what NZS4541 requires?



### Clause 403.12 – Seismic Resistance of Pipework

- Provides two options
  - a) Seismic design to equal that of the Building Structure under NZS1170.5
    - May define seismic accelerations of up to 3 or 4 g.
    - Probably needs input from a structural engineer
      - Need to understand issues such as distances to fault lines, ground conditions and the like.
  - b) Seismic Design to 403.12.1 to 403.13.4 inclusive
    - The "Cook Book" approach
      - Clause 403.12.2
        - All pipework shall be designed to resist repeated forces due to seismic acceleration of 1.0 g acting on the mass of the pipework in any direction in addition to the gravity force.
        - Note: This load may be greater than the requirements of NZS 1170.5, and may increase the support size but it eliminates the need for a more detailed study.

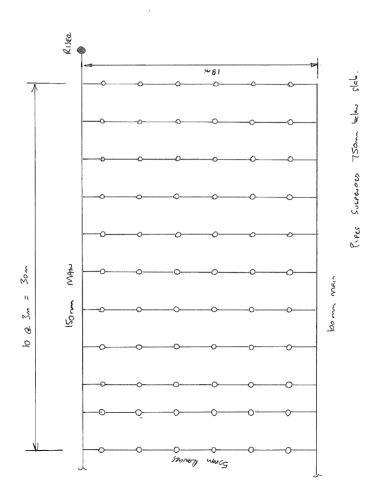


### Seismic Design – The Cookbook Approach

- Stage 1 Pipework Layout and Sizing
- Stage 2 Bracing Locations
- Stage 3 Bracing Loads
- Stage 4 Bracing Sizing
- Stage 5 Fasteners/Fixings



### Stage 1 – Pipework Layout

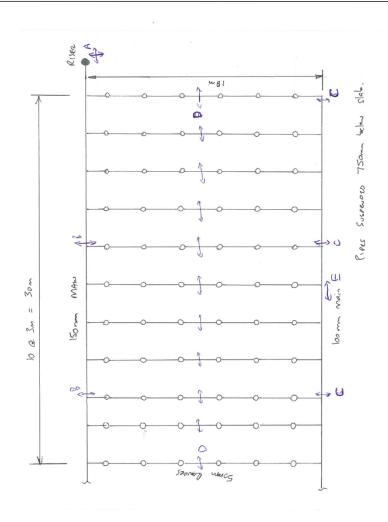

- Pipework design
  - Layout and size pipework in normal manner
    - Where are you going to brace too?
    - By shifting pipe, can you reduce bracing costs?
      - Can you clamp to structure?
      - Can main runs be located near main structural elements?





### Hypothetical Exercise – Stage 1

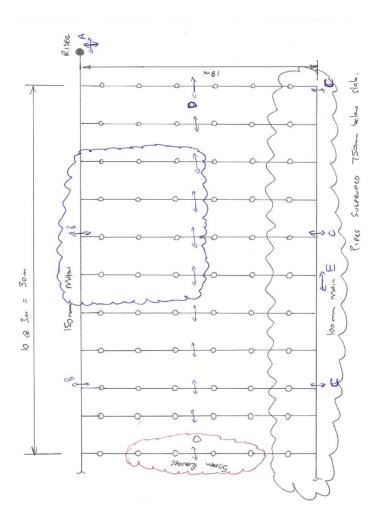
- Worked example
- 3 x 3 grid
- Mains suspended 750mm below slab.
  - Why?
- 150mm front main
- 100mm back main
- 50mm ranges






SLIDE 6

### Stage 2 – Bracing Layout


- Clause 403.2.4 403.2.6
  - Brace Locations
  - At riser
  - Mains
    - Lateral maximum 12m centres
    - At least 1 longitudinal
    - Within 600mm of flexible couplings/seismic joints
  - Ranges
    - At last hanger
    - Laterally at least every 12m
  - 5 different braces shown here





### Stage 3 – Bracing Loads

- Refer Figure 4.3 and Table 4.5
  - Load distribution to pipework bracing
  - Each pipe needs to be factor in once
    - Both lateral and longitudinal
  - No "right" answer
  - Brace B Lateral brace
    - 12m 150 pipe at 38.8kg/m= 465.6kg
    - 9m 50 pipe x 4 ranges x 7.73kg/m= 278.2kg
    - Total load = (743.8kg +10%) x 9.8m/s<sup>2</sup>= 8.0kN
  - Brace D –Lateral brace
    - 12m 50 pipe x 7.73kg/m = 92.76kg
    - Load = (92.76kg + 10%) x 9.8m/s<sup>2</sup> =1.0kN
  - Brace E Longitudinal brace
    - 30m 100mm pipe x 21.1kg/m = 633kg
    - 3m 50 pipe x 11 ranges x 7.37kg/m = 243.1kg
    - Total Load = (876.1 + 10%) x 9.8m/s<sup>2</sup> = 9.4kN



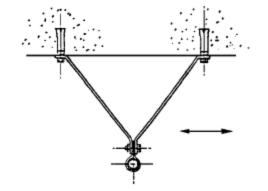


| Pipe size                                                   | Weight including water                  | Material                    |
|-------------------------------------------------------------|-----------------------------------------|-----------------------------|
| (nominal diameter)                                          | ( <i>W</i> <sub>p</sub> )               |                             |
| (mm)                                                        | (kg/m)                                  |                             |
| 25                                                          | 3.05                                    |                             |
| 32                                                          | 4.19                                    |                             |
| 40                                                          | 5.03                                    |                             |
| 50                                                          | 7.37                                    | BS 1387 medium screwed      |
| 65                                                          | 10.3                                    | and socketted tube          |
| 80                                                          | 13.7                                    |                             |
| 100                                                         | 21.1                                    |                             |
| 150                                                         | 38.8                                    |                             |
| 200                                                         | 62.6                                    | BS 3600 tube                |
| NOTE - For a seismic acceleration                           | of 1.0 g the required restraining force | F <sub>p</sub> is given by: |
| $F_{\rm P} = W_{\rm P} \ge 0.00981 \ge L_{\rm P}  (\rm kN)$ |                                         |                             |
| where $L_P$ = length of pipe under rest                     | raint.                                  |                             |

### Table 4.5 – Weight calculations



### **Calculating Bracing Loads**


- Force =mass x acceleration/1000
- Force is the load, and is measured in kiloNewtons (kN)
- Mass is the weight of the component, in kilograms (kg)
- Acceleration is 1.0g (for the cookbook approach) or as specified by the structural engineer
  - 1.0g is 9.8m/s<sup>2</sup>
- Example at 1.0g (cookbook approach) was is the load for a pipe weighing 320kg
- Force = 320kg x (9.8m/s<sup>2</sup>) / 1000

= 3.1kN



### Stage 4 - Bracing Sizing

- Pipes are set 750mm below ceiling
- If braces at 45<sup>0</sup>, braces are 1060mm long
- Brace B 8.0kN
  - Table 4.6 40mm pipe.
- Brace D 1kN
  - Table 4.6 10mm rod
    - Rod length?



- Brace E 9.4kN
  - Table 4.6 50mm pipe
    - Split into 2 braces –each rated at 4.7kN minimum?
    - Two by 25mm at half spacing



### Brace Sizing (In compression)

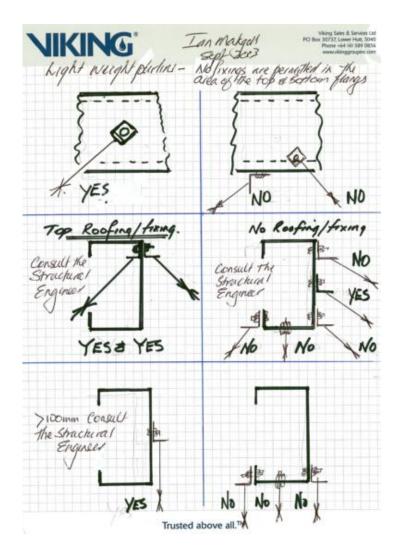
|                       | Allowable horizontal support load |               |               |               |            |  |  |  |
|-----------------------|-----------------------------------|---------------|---------------|---------------|------------|--|--|--|
| Shape and size        | Brace length                      | 30° angle     | 45° angle     | 60° angle     | Horizontal |  |  |  |
| (mm)                  | for <i>l/r</i> = 200              | from vertical | from vertical | from vertical | (kN)       |  |  |  |
|                       | (m)                               | (kN)          | (kN)          | (kN)          |            |  |  |  |
| Galvanised steel wire | (tension only)                    | 0.23 0        | 0.33          | 0.40          | 0.45       |  |  |  |
| 3.2 dia.              | (tension only)                    | 0.20          | 0.55          | 0.40          | 0.45       |  |  |  |
| Mild steel rod        |                                   |               |               |               |            |  |  |  |
| 10 dia.               | 0.50                              | 1.0           | 1.4           | 1.7           | 1.9        |  |  |  |
| 12 dia.               | 0.60                              | 1.4           | 2.0           | 2.4           | 2.8        |  |  |  |
| 16 dia.               | 0.80                              | 2.5           | 3.5           | 4.3           | 5.0        |  |  |  |
| 20 dia.               | 1.00                              | 3.9           | 5.5           | 6.8           | 7.8        |  |  |  |
| BS 1387 medium tube   |                                   |               |               |               |            |  |  |  |
| 20 NB                 | 1.7                               | 2.5           | 3.5           | 4.3           | 5.0        |  |  |  |
| 25 NB                 | 2.2                               | 3.9           | 5.5           | 6.8           | 7.8        |  |  |  |
| 32 NB                 | 2.8                               | 5.0           | 7.1           | 8.7           | 10.1       |  |  |  |
| 40 NB                 | 3.2                               | 5.7           | 8.1           | 9.9           | 11.5       |  |  |  |
| 50 NB                 | 4.0                               | 8.1           | 11.5          | 14.0          | 16.2       |  |  |  |
| 65 NB                 | 5.1                               | 10.4          | 14.7          | 18.1          | 20.8       |  |  |  |
| Mild steel flat       |                                   |               |               |               |            |  |  |  |
| 40 x 6                | 0.35                              | 3.0           | 4.2           | 5.2           | 6.0        |  |  |  |
| 50 x 8                | 0.46                              | 5.0           | 7.0           | 8.6           | 10.0       |  |  |  |
| 50 x 10               | 0.58                              | 6.2           | 8.8           | 10.8          | 12.5       |  |  |  |
| Mild steel angle      |                                   |               |               |               |            |  |  |  |
| 25 x 25 x 3           | 0.96                              | 1.7           | 2.5           | 3.0           | 3.5        |  |  |  |
| 30 x 30 x 5           | 1.1                               | 3.4           | 4.9           | 6.0           | 6.9        |  |  |  |
| 40 x 40 x 5           | 1.5                               | 4.7           | 6.7           | 8.2           | 9.4        |  |  |  |
| 50 x 50 x 5           | 1.9                               | 6.0           | 8.4           | 10.3          | 12.0       |  |  |  |
| 60 x 60 x 6           | 2.3                               | 8.6           | 12.2          | 14.9          | 17.2       |  |  |  |
| 80 x 80 x 6           | 3.1                               | 11.6          | 16.5          | 20.2          | 23.3       |  |  |  |

### Table 4.6 – Allowable horizontal loads of typical pipework braces



### Stage 5 – Pipe Fixings

- How are you going to fix to pipe?
  - Pipe clamps?
  - Proprietary Seismic Fixings
    - Do your fitters know installation requirements?








### Courtesy Ian Makgill

- Generic "rules"
- Show on drawings and seek approval where possible
  - Have seen this approach save one contractors bacon in the past



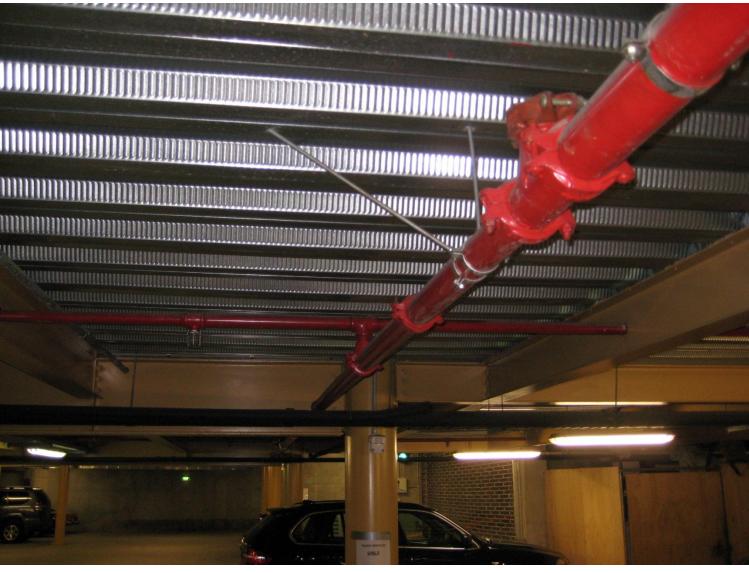


### Stage 5 – Fixings to structure

- In all examples here Type B
- Brace B M16 masonry anchor
- Brace D M6 masonry anchor
- Brace E two M10 masonry anchor
- What are you fixing too?
- Are anchor seismically rated
  - Dynasets?
  - Edge distances
  - Material condition?
- How strong is structure?

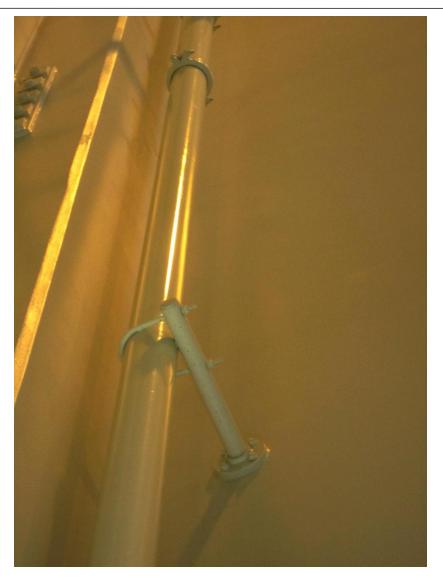

|                                                                               | Horizontal load capacity   |      |                    |                        |               |             |  |
|-------------------------------------------------------------------------------|----------------------------|------|--------------------|------------------------|---------------|-------------|--|
| Factorian time                                                                | Vertical angle 30°         |      | Vertical angle 45° |                        | Vertical a    | angle 60°   |  |
| Fastening type                                                                | Type A Type B              |      | Type A Type B      |                        | Type A Type B |             |  |
|                                                                               | (kN)                       | (kN) | (kN)               | (kN)                   | (kN)          | (kN)        |  |
| Masonry anchors                                                               |                            |      |                    | , í                    |               |             |  |
| M6                                                                            | 1.7                        | 1.3  | 2.4                | 2.0                    | 2.9           | 2.6         |  |
| M8                                                                            | 3.0                        | 2.0  | 4.2                | 2.9                    | 5.2           | 3.8         |  |
| M10                                                                           | 4.4                        | 2.9  | 6.2                | 4.3                    | 7.6           | 5.5         |  |
| M12                                                                           | 6.8                        | 4.3  | 9.5                | 6.3                    | 11.7          | 8.7         |  |
| M16                                                                           | 12.0                       | 5.7  | 17.0               | 8.7                    | 20.9          | 12.3        |  |
| Bolts to steel                                                                |                            |      |                    |                        |               |             |  |
| M6                                                                            | 1.7                        | 1.9  | 2.4                | 2.6                    | 2.9           | 3.0         |  |
| M8                                                                            | 3.0                        | 3.5  | 4.2                | 4.6                    | 5.2           | 5.4         |  |
| M10                                                                           | 4.7                        | 5.5  | 6.7                | 7.3                    | 8.1           | 8.5         |  |
| M12                                                                           | 6.8                        | 7.9  | 9.5                | 10.5                   | 11.7          | 12.3        |  |
| M16                                                                           | 12.0                       | 14.4 | 17.0               | 19.1                   | 20.9          | 22.0        |  |
| Bolts to BP 450 purlins                                                       | 12.0                       | 14.4 | 17.0               | 10.1                   | 20.0          | 22.0        |  |
| M6                                                                            | 1.7                        | _    | 2.4                | _                      | 2.9           | _           |  |
| M8                                                                            | 2.9                        | _    | 4.1                |                        | 5.0           | _           |  |
| M10                                                                           | 3.6                        | _    | 5.1                | _                      | 6.2           | _           |  |
| M12                                                                           | 4.3                        |      | 6.1                |                        | 7.4           |             |  |
| M16                                                                           | 5.7                        |      | 8.1                |                        | 9.9           |             |  |
| Bolts to timber                                                               | 0.7                        |      | 0.1                |                        | 0.0           |             |  |
| M12                                                                           | 2.1                        | _    | 3.3                | _                      | 4.4           | _           |  |
| M16                                                                           | 2.9                        | _    | 4.8                | _                      | 7.1           | _           |  |
| M20                                                                           | 3.7                        | _    | 6.4                | _                      | 10.0          | _           |  |
| Coach screws to timber                                                        | 0.7                        |      | 0.4                |                        | 10.0          |             |  |
| M8                                                                            | _                          | 0.75 | _                  | 0.95                   | _             | 1.1         |  |
| M10                                                                           | _                          | 1.3  | _                  | 1.8                    | _             | 2.2         |  |
| M12                                                                           | _                          | 1.8  | _                  | 2.6                    | _             | 3.4         |  |
| M16                                                                           | _                          | 3.0  | _                  | 4.2                    | _             | 5.6         |  |
| M20                                                                           | _                          | 4.3  | _                  | 6.2                    | _             | 8.4         |  |
| Fastening in shear 🔪                                                          |                            |      |                    |                        |               |             |  |
|                                                                               | Fastening in tension/shear |      |                    |                        |               |             |  |
| 4                                                                             | ×+                         | 4    |                    |                        | ĩ             |             |  |
| <u> </u>                                                                      |                            | 4    |                    | +                      |               | +           |  |
|                                                                               | /                          |      |                    |                        |               |             |  |
|                                                                               | /                          |      |                    | 1                      |               |             |  |
|                                                                               |                            |      |                    |                        |               |             |  |
| ×/                                                                            | — Vertical an              | gle  |                    |                        | - Ver         | tical angle |  |
| Horizontal Horizontal                                                         |                            |      |                    |                        |               |             |  |
| load                                                                          |                            |      | load               | $\rightarrow - \oplus$ |               |             |  |
| i                                                                             |                            |      |                    | ł                      |               |             |  |
| Туре А                                                                        | <b>\</b>                   |      |                    | ту                     | pe B          |             |  |
| NOTE -                                                                        |                            |      |                    |                        |               |             |  |
| <ol> <li>Bolted shear (type A) cor</li> <li>Tanaia (base (type A))</li> </ol> |                            |      |                    |                        |               |             |  |
| (2) Tension/shear (type B) (<br>shank diameter and have                       |                            |      |                    |                        |               | u times the |  |
|                                                                               |                            |      |                    |                        |               |             |  |

#### Table 4.7 - Horizontal load capacity of typical connections











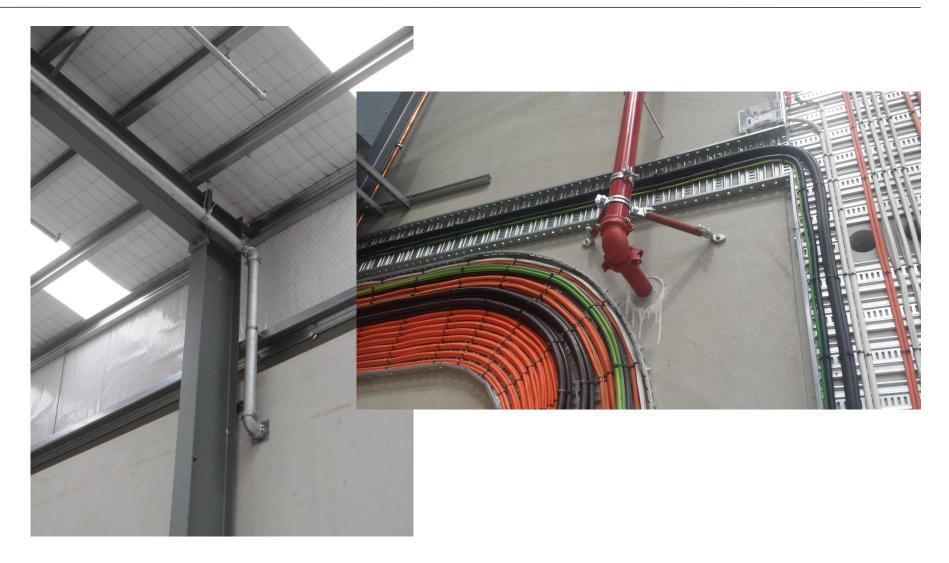



Aon Risk Solutions | Global Risk Consulting



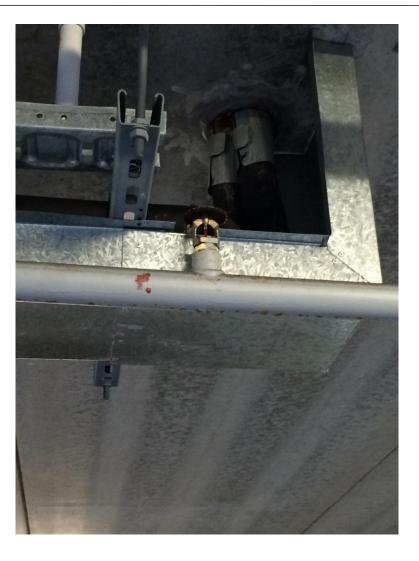


Aon Risk Solutions | Global Risk Consulting

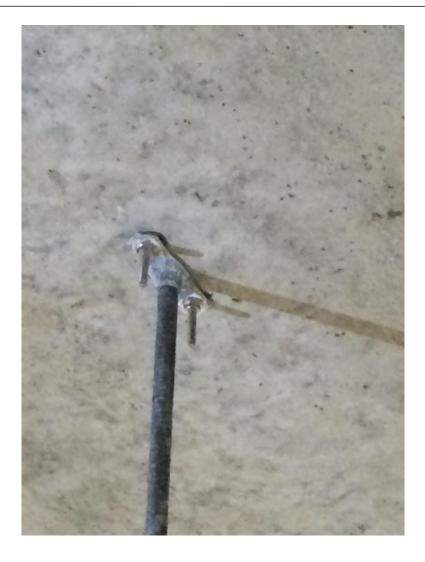





### Errors and Omissions – Name 2 errors

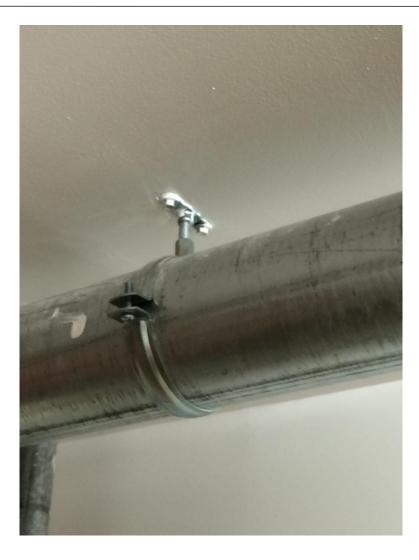























Aon Risk Solutions | Global Risk Consulting | Practice Group/Tier 4 Proprietary & Confidential

- Threaded rod lengths
  - 10mm rod has a maximum length of 500mm if used in one direction
  - Bending threaded rod
- Inadequate structure
  - Bracing to weak building elements
  - Not taking advantage of primary structure
- Fasteners
  - Non-seismically rated concrete fasteners
    - Dynasets and the like
    - Refer Aon Technical Note 14-14 (June 2014.)
    - Edge distances
    - Timber size
- Risers
  - Require 4 way braces at top (and every six meters if all buildings)



### Summary

- Bracing design is not rocket science
  - Simple calculations, with attention to detail
- Aon will be requiring evidence that it has been addressed
  - Will need to be documented as part of the design process
  - Some builders already are (PS from CPEng engineers)
- Clients can specify what they want
  - Much higher than 1.0g
  - We are encouraging them to clearly outline their design loads
  - Design concepts stay the same
  - 150mm rod length rule not applicable at higher loads
- There may be some errors in NZS4541, but fundamentally it is sound
- The Christchurch and (particularly) Wellington events have shaken up the construction industry
  - Builders and consultants have sat up and taken notice
  - Emphasis on all trades to brace correctly
    - Increased scrutiny on fire trades



### **Other Issues**

- Presentation has concentrated on bracing
  - Hanger design and strength
  - Pipework
    - Flexibility
    - Rigidity
  - Clearances
    - Structure
    - Other trades
  - Building Seismic Joints
  - Pumps, batteries, controllers, tanks, etc
  - Racks and floating ceilings
  - Ceilings



